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Abstract 
 
Realizing large-scale active networks is heavily contingent upon addressing security 
concerns at the outset. Various approaches have been taken toward integrating 
security within an active node, each defining the mechanisms required to be in place 
within the NodeOS or the EE in order to provide security guarantees within the 
system. An acceptable short-term solution to security in deploying a practical testbed 
such as the ABONE is to divide security concerns into two classes viz. hop-by-hop 
and end-to-end. This paper describes one approach toward setting up hop-by-hop 
packet authentication and integrity, similar to the ABone Hop-by-Hop message 
authentication and integrity framework, but usable in a more general context. It 
answers most of these requirements using existing protocols in network security and 
is flexible enough to be used in any scenario requiring mediated node-node security 
associations. 
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1 Introduction 

 
Traditional networks are constrained in the way they process packets. There exists a 
strict distinction between what the user does in terms of executing the code and what 
the underlying network provides the user. Processing within the network is limited to 
simple forwarding and/or routing decisions with some level of congestion control and 
Quality of Service. The traditional “passive” networks have several limitations - the 
difficulty in integrating new technologies and standards into the shared network 
infrastructure, poor performance due to redundant operations at several protocol 
layers, and difficulty in accommodating new services within the existing architectural 
model. Active Networks were born out of the need felt to replace the numerous ad 
hoc approaches to network-based computation, thus providing a generic capability 
that allowed the users to program the network itself. It is now possible to think of new 
protocols and innovative cost-effective technologies easily deployed at intermediate 
nodes.  
 
Simply having any active packet modify the behavior of the intermediate network- 
nodes has potential implications on security. An active packet containing incorrect 
code, or more importantly, malicious code, can easily compromise any active node if 
proper precautions are not taken. The topic of security in active networks is complex 
in itself and like every big problem, this one too is better approached, by breaking it 
into parts. In this paper we attempt to answer security issues between two 
communicating peers, using a keying server and predefined protocols in the area of 
network security. 
 

1.1 Introducing the security problem in Active Networks 

 
Given the flexibility and power that active packets provide, it is only obvious that 
security concerns in active networks are amplified many-fold. Numerous threats arise 
due to the various interactions between the NodeOS, the EE, the channels and the 
ANEP1 packets. A threat model (Figure 1) can be defined by identifying the various 
cases where security may be compromised.  
 
The principals that need to be considered in this threat model are the active packet, 
the NodeOS, the EE(s) and any installed active service. Channels may be created 
either by the EE or by the installed active code by specifying the filtering identifier to 
the NodeOS. 
 
                                                 
1 Active Network Encapsulation Protocol 
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Figure 1Threat model in Active Networks 
 
We begin by considering a bogus packet entering the active node (1). An active node 
can be flooded by such bogus packets with the intent of causing some Denial of 
Service. The EE sees a threat from this bogus packet because processing such packets 
translates into some direct resource consumption by itself. EEs are granted only 
limited resources when they start up and so care must be taken to see that its 
resources are not consumed indiscriminately. The same applies when these bogus 
packets consume resources allocated to other installed active services within the 
Execution Environment.  
 
Malicious active code installed in an Active Node may try and access (or modify) 
certain privileged information within either the NodeOS or the EE (3, 4). Privileged 
functionality can either be some protected operation, or just any sensitive information 
that needs to be kept private within the node. Additionally, active code installed 
within the EE may try and steal packets from a flow (2) by setting up filters that 
manage to capture someone else’s packets. This means that certain characteristics 
required by the sender of the packet can now be manipulated to exhibit different 
behavior. Active code may also directly try and access resources allocated to other 
active services or EEs (5), causing the latter to exceed their resource bounds and be 
terminated or revoked. 
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A malicious EE can try and consume all of the node resources or feed off resources 
allocated to other EEs (6). There is no way for active code to ensure by itself that the 
EE in which it is executing will perform its operation reliably. A faulty or malicious 
EE can leak private information contained within the packet and do practically 
anything it wants with the active code. In the same way, a malicious active node may 
do anything it wants with an installed EE or active code.  
 
The Security Architecture for Active Networks [8] uses the above threat model as a 
reference to describe the security architecture components of an active node. It also 
describes the recommended primitives available to an active application for 
interacting with the security architecture. This architecture aims primarily at 
answering the following questions: 
1. Which principal wants to perform this action? 
2. Does this action have any security implications? 
3. Is this principal authorized to perform this action? 
 
The first question relates to authentication. Knowing who wants to perform the said 
action is a necessary precondition to any form of secured policing. Authorization is 
very often combined with the list of authorized activities a principal can perform to 
form what is known as a credential. Since attempting to describe the security policy 
in terms of each individual principal’s authority to access each individual object is not 
considered scalable, credentials combine the description of the identity of the 
principal and the aggregation of certain attributes associated with that principal using 
roles, groups, etc.   
 
Questions 2 and 3 relate to node policy. Policy enforcement cannot be built directly 
into the NodeOS or the EE enforcement mechanism since it is not possible to know a 
priori who will or will not be granted access to an active code. Furthermore, it is not 
possible to know what actions the active code would consider security relevant.  Thus 
every node, EE and active service exports a set of interfaces to operations and 
resources within itself. Access to these resources can now be mediated by treating 
access to these interfaces as specific events within the policy framework.  
 
Compliance checks are made at appropriate places in order to ensure that a particular 
operation abides by the policy. Authorization may also be delegated, at which time 
credentials describing the originating principal may also need to be passed on. In 
some active network architectures, there may be no mechanism to pass credentials 
identifying the requesting principal to the node. Here the node must allocate bulk 
resources and trust the EE to perform reliably. In case the EE is not that trusted, the 
node may simply limit its risk by allocating only limited resources to the EE. 
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1.2 What problem we are attempting to solve 

 
In order to form a realistic testbed for Active Networking experiments, the Active 
Network Backbone, or the ABone [1] has been set up. The Abone forms a virtual 
network infrastructure on which a growing set of active network components can be 
tested and experimentally deployed. While security in active networks is an ongoing 
effort in the research community, there still remains the need to provide some 
acceptable short term solution so that nodes can be reasonably trusted for the near 
term usage of the ABone. 
 
Secure services for active networks can be roughly separable into two classes viz. 
hop-by-hop and end-to-end. Hop-by-hop protection is intended to prevent 
“outsiders”, or non-neighbors from inserting packets into the stream. This in turn 
ensures that any signaling between the neighbors is also protected. End to end 
security mechanisms on the other hand, bind the originating entity to the packet so 
that the necessary access control checks can be performed. 
 
Hop-by-hop security is general enough to warrant its presence in the NodeOS itself – 
different EEs can then use this as a common service. It still remains unclear whether 
end-to-end security should reside in the EE or have part of it implemented in the 
NodeOS. Currently, the ABone effort is directed toward placing an end-to-end 
security mechanism into each EE and requires that the NodeOS trust the EEs in this 
regard. 
 
This paper describes our effort toward setting up hop-by-hop packet authentication 
and integrity as specified in the ABone Network Security Architecture [2], but 
useable in a more general context. It answers most of the requirements of hop-by-hop 
packet security by using existing protocols in network layer security as opposed to the 
ANEP layer as described in [6]. This approach is general enough to be used in any 
networking scenario requiring mediated node-node security associations. Our 
approach uses a keying server to dynamically set up Security Associations between 
two peers that want to have hop-by-hop security between them. A secure topology 
can be defined at the keying server using a simple configuration file. Hosts that are a 
part of this secure topology, simply establish an IKE Security Association with the 
keying server, and are handed all the pertinent keying information in the form of 
encrypted IKE notification payloads.  
 
Security Associations between peers are implemented in exactly the same way as is 
done for IPSec and hence all the features of IPSec such as replay protection, message 
authentication and message integrity are automatically adopted by this framework. 
This framework also integrates multicast security associations into the IPSec 
framework and implements the hierarchical key distribution mechanism, facilitating 
easy revocation of group members. 
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2 Background 

 

2.1 Hop-by-Hop Security at what level? 

 
Data sent between the two nodes can be secured at various layers of the OSI model. 
The layer where security actually needs to be implemented depends on the user and 
the more importantly the application requirements.  
 
In the case of hop-by-hop security, performing secure transforms at higher layers 
might lead to duplication of effort either on a per-application or a per-transport basis. 
It thus makes sense to have this feature lower down in the active network protocol 
stack, either in the ANEP or the network layer. We use the network level rather than 
the ANEP layer in order to provide hop-by-hop security services. Doing so allows us 
to use this framework even in non-active scenarios. We summarize a few differences 
between our approach and the ABONE hop-by-hop framework in Table 1.  
 
Defining security services in the network layer also allows us certain component 
choices: 
�� Network layer entities such as IP addresses can be easily authenticated using the 

DNSSEC framework 
�� Packet authentication and integrity can be achieved using the IP Security 

Framework (IPSec) as defined by the IETF. 
 

The Keying Server Prototype ABONE Hop-by-Hop framework 

Defines Security Associations in the 

Network Layer 

Defines Security Associations in the 

ANEP layer 

Identifies the SA using the receiver IP 

address and the SPI 

Identifies the SA using the sending 

interface and the key identifier 

Uses existing sequence numbering and 

replay protection within the IPSec 

implementation 

Needs to define this separately since 

replay protection is done at the ANEP 

layer 

Do not have a clear picture of the active 

packet’s message boundaries 

Clearly knows the message boundaries, 

hence can perform services such as non-

repudiation more effectively 
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Need to secure every packet sent from the 

source to the destination irrespective of 

whether it is an ANEP packet or no 

Can be more efficient in terms of speed 

because ANEP packets as opposed to 

individual IP packets are being secured 

Defines a key management protocol to 

distribute authentication keys among 

peering nodes 

No such protocol has been defined in this 

framework as yet although key 

management interfaces have been defined 

Table 1Comparison between the Keying Server and the ABONE Hop-by-Hop 
security frameworks 

 

2.2 The IP Security framework 

 
IP packets themselves have no inherent security. They only provide us with a simple 
level of safety where malformed packets and packets not destined to any particular 
host are discarded or dropped. There is no means to prevent different hosts from 
reading packets passing through the network, from modifying IP data and their 
related checksums, and from spoofing packets in general. IPSec provides us the 
mechanism to protect IP datagrams by defining a set of protocols to be used along 
with IP, thus providing features such as source authentication, data integrity, data 
confidentiality, and anti-replay protection. 
 
IPSec provides a standard, robust, and extensible mechanism to provide security to IP 
and upper-layer protocols. A default suite of algorithms is defined to assure 
interoperability between different implementations while also keeping it relatively 
straightforward to add new algorithms without breaking interoperability. IPSec 
achieves its security using two protocols - Authentication Header (AH) and 
Encapsulating Security Payload (ESP). A "Security Association"  (SA) is a term used 
to refer the particular set of security services afforded to IP packets sent from a 
particular source to a particular destination. Packets are mapped to a particular SA 
based on some security policy. 
 
IPSec provides all of its security services using secret key cryptography. A 
mechanism to manually add keys for these services is mandatory to implement thus 
ensuring interoperability of the base IPSec protocols. Since this method of manual 
keys scales very poorly and is difficult to manage, a dynamic key management 
protocol called the Internet Key Exchange (IKE) is also defined. 
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2.2.1 The Internet Key Exchange 

 
RFC 2409 describes the IKE framework for obtaining authenticated keying material 
for use in Security Associations such as AH and ESP. The IKE protocol is a hybrid of 
three different protocols, each contributing to different features: 
- The Internet Security Association Key Management Protocol (ISAKMP) defines 

a framework for authentication and key exchange but does not define them 
specifically. 

- The Oakley protocol describes a series of key exchanges and details the services 
provided by each 

- SKEME describes a versatile key exchange technique, which provides anonymity, 
repudiability and quick key refresh. 

 

 

 

Figure 2 IKE and IPSec SAs 
 
Using a part of each of these component protocols, IKE is able to provide a rich 
variety of services within the IPSec Domain of Interpretation (DOI) as well as 
general-purpose policy and key negotiations for other protocols such as SNMPv3, 
OSPFv2, etc. 

1.  
The IKE protocol also shares the concept of a Security Association. However in the 
IKE context, the SAs are bi-directional. Nodes wanting to be IPSec peers must also 
be IKE peers. The IKE SA defines the way in which the two peers communicate – the 
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algorithm to use to encrypt the traffic and the means to authenticate the other end. 
The IKE SA once formed can then be used to create any number of IPSEC SAs 
between the peers (Figure 2).  
 

2.3 DNSSEC Authentication 

 
The DNSSEC framework (RFC 2535) describes the security extensions to the basic 
Domain Name System. These extensions provide enhancements to Key Distribution, 
Data Origin Authentication and Transaction and Request Authentication that allow it 
to be used as infrastructure for public key distribution.  
 
The DNS Security Extensions define a new Resource Record (RR) type called the 
KEY record that can be used to associate public keys with DNS names. 
Authentication of records is possible by a security aware resolver by checking the 
digital signatures sent as SIG records as part of a query response. Commonly all the 
zone records in the DNS server are signed at the same time using a single private key 
but there can also be multiple keys for different algorithms, signers, etc. The private 
key for the DNS zone can be kept offline for most of the time and is not in any way 
related to the server that maintains the DNS records. Retrieving signed keys for a 
zone’s sub-zones can be done by descending through the tree starting with one or 
more trusted keys for the parent zone.  
 

2.4 Multicast Key Distribution 

 
Figure 3 shows the Logical Key Distribution architecture [11], which provides for 
secure removal of registered members providing transmission and storage efficiency.  
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Figure 3 The Logical Key Distribution Framework 
 

Although this scheme is hierarchical, there is no actual requirement for multiple 
servers. Nodes wanting to be a part of the multicast group establish a shared secret 
with the server. The server additionally generates a number of intermediate keys for 
each remaining node in the tree using some robust key generation process. Clients 
remain ignorant of these intermediate keys generated by the server. Thus in the 
sample hierarchical tree shown in the Figure 2.5, keys 1 through 8 are keys shared by 
the server independently with the eight different nodes, while keys 12, 34, 56, 78, 
1234, 5678, and 0 are maintained as internal nodes in the keying server’s hierarchical 
tree. 
 
Starting above the leaf node of which a client is a member and proceeding toward the 
root, the server sends all ancestor node-keys within the tree, such that every key sent 
is encrypted by its corresponding child key. Thus for the node 3, the server sends the 
key 34 encrypted using key 3,  key 1234 encrypted using key 34 and key 0 encrypted 
using 1234 
 
Key messages may also be combined into one message at the expense of larger 
message size. Thus keys 0, 34, and 1234 may be encrypted once using key 3 and then 
sent to the client corresponding to this particular key. At the end of this process, all 
the nodes that have registered with the server now have the list of keys from the root 
to its leaf in the hierarchical tree. Key 0, which forms the root of the hierarchical tree 
is shared between all the clients and is used as the common multicast key. 
 
To see the strength of the LKH approach let us consider that client 3 needs to be 
revoked form the multicast group. In order to do so, the keying server simply changes 
the ancestor keys corresponding to client-3 i.e. keys 0, 34, and 1234. Only nodes that 
use one of these affected keys need to be made aware of this change. The keying 
server thus sends out only the following key-update messages (shown lightly shaded 
in Figure 3): Key-34’ encrypted using Key-4, Key-1234’ encrypted using Key-34’, 
Key-1234’ encrypted using Key-12, Key-0’ encrypted using Key-1234’ and Key-0’ 
encrypted using Key-5678. Key-0’ now forms the new group key.  
 
The LKH approach has a number of benefits. Firstly, the costs of user-storage and re-
key transmissions are balanced and scale well as the number of clients increase. Also, 
every intermediate key is capable of being used as a subgroup key protecting those 
nodes below it. Finally, this approach is also resistant to collusion among a group of 
users. 
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3 Designing the Keying framework 

 

3.1 Overview 

 

Our keying infrastructure consists of three main components as shown in Figure 4 - 
the Keying Server (KSV), a Key Management Module (KMM) within every node, 
and an Authentication Server (ASV). The keying server forms the central entity in our 
framework. Rather than defining a separate module for the KMM we decide to extend 
the services provided by IKE itself so as to seamlessly integrate IPSec services into 
our framework. Finally, the ASV itself can be simply treated as a DNSSEC server.  
 

Figure 4 Design overview for the keying framework 
 

The secure topology is specified in the form of links and groups, where the links 
correspond to unidirectional Security Associations and the groups, the different 
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multicast groups. This topology is configured into the KSV either statically, when the 
server comes up or dynamically using configuration commands. We define the 
“trusted set” in a KSV as the collection of all those nodes that are either configured as 
one end of a secure link or a member of a secure group inside a particular KSV.  
 
The KMM runs on every node that wants to be part of the KSV’s trusted set including 
the KSV itself. In order to set up the relevant security associations, a node needs to 
register itself with the KSV. Either the KSV or the trusted node can initiate this 
registering process. If initiated by the node, we can think of this being done 
automatically when the node boots up. A node can register with multiple servers; we 
do not however define how to resolve any conflicts that may arise out of the same 
link being defined at two different servers. Errors in configuration are flagged to the 
appropriate servers when a node detects that such a mismatch in configuration has 
occurred. Policy can additionally be used to define which KSV a node is allowed to 
register with in the first place.  
 
During the node registration process and any time the configuration at the KSV 
affecting this particular node has changed, the KMM at the KSV sends all the 
pertinent information for both links as well as groups to this node. This link and 
group information is then used to set up the security associations within the node. 
 
Information exchanged between the KSV and the trusted nodes are authenticated so 
as to discourage spoofing of messages, sent either with the intent of breaking security 
or simply in order to perform some Denial of Service attack at the KSV. The 
Authentication Server provides this service in our framework. The ASV maintains 
authentication information for all those nodes that it considers as being a part of its 
domain of control. ASVs are organized hierarchically and perform some trust-
chaining mechanism to authenticate nodes not lying directly in its domain of control. 
 
In the following sections we describe the basic design of the various sub-components, 
the capabilities if any, that we need additionally from them, and finally how we 
actually provide these capabilities. 
 

3.2 Integrating IKE 

 

3.2.1 Node Registration 

 

Nodes that want to be a part of the secure topology maintained at the KSV need to 
register with it. Once an IKE SA between the KSV and the node has been set up, 
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keying information is sent from the former to the latter. Since the registering node 
needs to set up IPSec-SAs without any direct IKE negotiation with the peer, the KSV 
needs to send all such information required by the registering node in order to 
describe the connection and SA between the latter and its peer accurately. We 
investigate the different fields that need to be included in the message sent by the 
KSV in order to achieve this. 
 
In order to set up a Security Association, the first thing that needs to be known is the 
type of security service (transformation type) – AH or ESP being offered by this SA. 
We specify a list of policy groups in the KSV configuration file. Every link or group 
specified in the configuration file is associated with a particular policy. Each policy 
group contains the following information: 
- The transformation type : e.g. (TRANS-TYPE = AH or ESP) 
- The lifetime in seconds for this SA: e.g. LIFE-SEC = 100 
- The lifetime in Kbytes for this SA: e.g. LIFE-KBYTE = 10000 
 
Another value that we need to add artificially is the SPI value. The SPI is used to 
identify a particular SA at the receiving end. Since this value is receiver specific, the 
KSV creates an SPI for every node that it maintains as part of its trusted set. By 
ensuring that the SPI generation process does not create duplicate values, the KSV 
can make sure that no two hosts use the same SPI to send data to the same peers. In 
order to conserve SPI space, the <SPI, sender> tuple can be used instead of just the 
SPI to identify the SA uniquely at the receiver. However in our application, we use 
the SPI value directly. 
 
Security Associations can be either inbound or outbound. Each of these SAs can exist 
independent of each other and can also have separate policies. Links at the KSV are 
specified with some directionality. In our configuration file we specify outbound links 
using the symbol “ =>”. In order to define inbound and outbound links with 
symmetrical policy, we also specify a bi-directional link using the “�” symbol. 
Examples of configuring links with such directionality are given in section 4.  
 

Figure 5 Fields in the ACK Message 
 
The KSV can specify some additional operations to be performed as soon as the given 
set of SAs is installed at the receiver. An indication of which operation is to be 
performed is passed as flags in the register message.  
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1. REFRESH: This set of SAs is treated as a complete set and not an incremental 
update. Any older SA that was created as part of an earlier registration or update 
process has to be deleted.  

 
2. ACK_REQD: The KSV has asked the node to send back a confirmation about 

having received and installed the SAs. Since IKE messages are sent using the 
unreliable UDP protocol, this is particularly useful in some instances where we 
want to guarantee that a particular SA was successfully installed. A timestamp 
returned by the node can be used by the KSV to determine the order in which SAs 
were installed at the node if required. In order to identify which out of a number 
of possible states an ACK value corresponds to, the client also reflects back the 
server’s timestamp value in its ACK message.  

 
The format of the ACK message is specified in Figure 5. We summarize the 
information contained in a registration message in Figure 6 below. A few of the fields 
defined in Figure 6 are used in the context of multicast groups and are explained in 
section 3.6. Nodes that do not belong to any multicast group have the “ID len” and 
“Number of Keys” fields set to zero.  
 
Once the information necessary to form an SA is received by the node, it goes ahead 
and instantiates the same. No negotiation between the two nodes or costly DNS 
lookups is required because KSV has already done this during the registration 
process.  

Figure 6 Fields in the Registration Message 
 

3.2.2 SA Deletion 

 
The process of deleting an SA is very similar to that of creating one using the keying 
server. However, we only need to send enough information to identify the SA or more 
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specifically, the peer and the SA directionality. Figure 7 specifies the format of fields 
required in the delete message.  We also specify the flag and timestamps fields as 
specified in the previous section 
 

Figure 7 Fields in the Delete Message 
 
When a node receives a “DELETE” message from the keying server for a particular 
SA, it identifies and deletes all the states associated with the same. Deletion of these 
states automatically cleans up any connection that may have been created “on the 
fly”.  
 

3.2.3 Alarm Indication 

 
Messages that are sent by the Keying Server do not fail silently if they are not able to 
perform their expected behavior. The affected node sends back some error indication, 
which the server can simply log or use directly in order to rectify the problem. We 
identify the following types for alarm indications: 
- SA_EXPIRED 
- MALFORMED_PACKET 
- SERVER_CONFLICT 
- SIGN_FAILED 
 

Figure 8 Fields in the Alarm Message 
 
Security associations have a limited lifetime. We need to re-key a particular SA 
before the latest one expires so that the link security is never compromised. In case a 
new key is not generated before the latest one expires, the node continues to use the 
existing SA, renewing its lifetime to the default value. The alarm “SA_EXPIRED” is 
however sent to the keying server to indicate that such an event has taken place.  
 
A “MALFORMED_PACKET” indicates that the node did not understand some 
packet sent by the server. This is different from the malformed packet at the network 
layer, which we handle by retransmission mechanisms at the TCP level or drop 
entirely in the case of UDP. Reception of such an alarm at the KSV is usually an 
indication of either someone attempting (unsuccessfully) to spoof or replay messages 
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from the server or simply a loss of synchronization between the keying server and this 
node.  
 
Some configuration errors such as two keying servers independently specifying the 
same node to be a part of the same multicast group can be detected at the node. If so, 
the node sends the “SERVER_CONFLICT” message to both the servers it has 
registered with. 
 
The SIGN_FAILED alarm is used in the context of secure multicast groups, and is 
described in section 3.6. 
 

3.3 Information Packaging 

 
IKE uses the ISAKMP protocol (RFC 2408) to specify the message formats sent 
between the two peers during various exchanges. Messages exchanged in an 
ISAKMP-based key management protocol are constructed by chaining together 
ISKMP payloads to an ISAKMP header. There are thirteen distinct payloads that all 
begin with the same generic header. Payloads are chained together in a message using 
the “next payload” field in the generic header. The ISAKMP header describes the first 
payload following the header and each payload describes which payload comes next. 
In our framework, we use the ISAKMP notification payload in an “Informational 
Exchange” to send keying information from the KSV to the node. 
 
We define the following notification message types for use within the keying server 
framework with the values for these types taken from the private section of the status 
message codes:  
- KEYEXCHANGE_ACK = 32768 
- KEYEXCHANGE_REGISTER = 32769 
- KEYEXCHANGE_DELETE = 32770 
- KEYEXCHANGE_ALARM = 32771 
 
The values within the notification payload are as specified in RFC 2408 except for the 
notification data field, which is decided by notification message type of this payload. 
For the notification types defined in our system - KEYEXCHANGE_ACK through 
KEYEXCHANGE_ALARM we define the notification data exactly as shown in 
Figure 5 through Figure 8. 
 
The Informational Exchange messages are protected using the IKE SA that has 
already been created. Thus only the IKE peers are able to read or modify the 
notification message contents. 
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3.4 Installing IPSec Security Associations 

 
The Freeswan KerneL IPsec Support (KLIPS) implementation provides us with a 
mechanism for installing and maintaining Security Associations within a node.  
 
KLIPS is implemented as follows. Every physical network interface is associated 
with one virtual interface (ipsec0, ipsec1, etc). Whenever a new SA is to be installed 
either manually or using the pluto IKE daemon, a new route referencing this virtual 
interface is installed in the kernel routing table.  
 
The SA corresponding this connection is itself added to the SADB, which is 
maintained as a hash table in kernel memory. IP packets belonging to a particular SA 
now pass through the ipsec virtual interface and are applied IPSec transforms based 
on the security association retrieved from the SADB. 
 
In our prototype, we use the KLIPS implementation for unicast SAs, as is. 
 

3.5 Extending the IPSec security associations for multicast data 

 
IPSec is inherently a point-to-point protocol. One side encrypts and the other side 
decrypts using some shared key either statically configured into it or dynamically 
generated using IKE. Securing multicast data is a totally different paradigm since 
there are multiple recipients of a single packet and often, many senders to the same 
multicast address.  
 
Some aspects of IKE fail when viewed in a multicast context. It is not possible for 
SPI values to be unique at all destinations within a multicast group without making 
the negotiation process too complex. Even if this were possible, we now have the 
problem of the entire SPI space being shared by all multicast nodes rather than each 
of them maintaining their own individual SPI space. A better approach and the one 
that matches our prototype well, is for the multicast server (the KSV in our prototype) 
to define and distribute the SPIs for each multicast group itself.  
 
Another aspect that fails in a multicast scenario is that of source authentication and 
replay protection. There is no way to synchronize the anti-replay counters when all 
nodes sharing the same secret can send data on the same multicast address. In our 
implementation we simply turn off replay protection and limit source authentication 
to lighter forms of “one within the group” rather that stricter definitions. 
 
In order to have multicast support within KLIPS, we need to make a few 
modifications.  
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- KLIPS is modified to treat any multicast packet as destined to itself. Multicast 
packets are only dropped if no application has been registered on this node to read 
multicast packets sent on this address.  

- As of this writing KLIPS is incapable of handling IP packets with a header size 
greater than 24 bytes as in the case of IGMP. We modify this behavior to allow 
the latter to go through  

- We also note that it is not possible to have an inbound and outbound SA for a 
given multicast address. This is because for both cases, the destination address 
and the SPI remain the same. We do not know the sender beforehand and so 
cannot remove the SA ambiguity using the source address. Hence we install only 
an outbound SA. The incoming packets use this same SA in order to decrypt 
packets sent to this multicast address  

 
In order to allow any side to be able to find the SA for a multicast packet uniquely, 
each node now uses the common group SPI as both the sending as well as the 
receiving SPI. Multicast SAs defined in this manner are always bi-directional which, 
intuitively, seems perfectly reasonable. 
 

3.6 Integrating the hierarchical keying framework for multicast 

groups 

 

 

 

Figure 9 Generating Group Member IDs 
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We use the LKH approach described in section 2.4 in our prototype implementation 
for multicast group member revocation. 
  
The LKH tree is constructed as a B+ tree. Nodes are added by comparing an “index” 
with the “current” node-index and traversing the tree based on the comparison result.  
The index would be a value that uniquely defines the host in a particular trusted set. 
 
The KSV defines a multicast group, which it uses to send key update messages to all 
members defined within one of its groups. This address is either known beforehand to 
each of the clients or is sent as part of the first register message sent by the KSV. In 
our implementation we have this value well known by all the clients. Clients that lie 
in the trusted set of a particular KSV need to bind itself to this group in order to 
receive the key update messages sent by its KSV.  
 
In order to send the key-update messages, there needs to be some way for the server 
to inform the clients about the key it is using to encrypt the current key-update 
message. A level indicator can identify this value – however there can be multiple 
nodes at the same level each maintaining the same level-indicator. For example in 
Figure 9, both keys 12 and 34 have a level-indicator as 2 (considering the root as 
level 0). In order to remove this ambiguity, we define a new method for identifying 
the encrypting key. 
 
We define a new ID for each member within a group by encoding the branch indices 
as an integer value, taken, in order to traverse the hierarchical tree from the root to 
this member. Hence the ID corresponding to node 192.168.1.1 in Figure 9 is “X100” 
while the ID for node 192.168.5.0 is “X110”. The leading “X” identifies the 
particular group in the list of all the groups maintained by this KSV. Intermediate key 
IDs are simply subsets of the leaf IDs – hence to denote the parent node of indexes 
192.168.1.1 and 192.168.1.2 we simply specify its ID as “X10”. These ID values and 
their associated lengths are sent in the node registration message (Figure 6) in order to 
identify a group member completely.  
 
Every message that is sent by the KSV needs to be signed. We see that this is true 
because using shared key approaches, it is always possible for a node containing the 
shared key to spoof messages from the KSV and hence confuse any revocation 
attempt by the KSV. Update messages that do not contain a valid signature are 
ignored and a SIGN_FAILED alarm (Section 3.2.3) is sent back to the KSV. In order 
for the group update process to work reliably we need some guarantees from the 
multicast channel itself. The algorithm will work incorrectly if packets are lost in the 
multicast channel. We however treat this issue as one inherent of multicast 
communication and beyond the scope of our problem. 
 
Adding a new member to a multicast group can be a very costly process in this 
approach. This is because, in order to keep the B+ tree balanced, ID values of 
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different nodes may change when a new member is added. New ID values for all 
affected nodes then need to be sent separately using register messages. 
 

3.7 Integrating the packet filter 

 
This security framework defined in its present form yet has a serious problem – 
spoofing is still very easily possible. To see how this is possible we again allude to 
the Freeswan IPSec implementation.  
 
The sending end of a Security Association ensures that packets that are sent are 
afforded all the necessary transforms. At the receiver end, packets with the correct 
transforms, using the correct keys are accepted, while those failing this step are 
considered to be bad. There is nothing however, which checks if the sender has 
simply abstained from IPSec processing altogether. The sender or any third party can 
change the source address on the packet without adding any IPSec headers and the 
receiver would just go ahead and treat this as a normal packet. This problem arises 
basically due to the lack of an inbound policy check in the Freeswan implementation.  
 
We provide an external policy check using a simple packet filter such as IPChains. 
IPChains can be integrated using the existing “updown” script within the FreeSwan 
implementation, to add and remove the filter rules as different connections are setup 
and destroyed. 
 



 20

4 Evaluation 

 

4.1 Security Associations 

 
While Node-Node security associations function as expected, multicasting at the time 
of this writing suffers from a curious problem. We tried testing multicast using a 
simple reader-writer application on a multicast address. While security associations 
were found to be set up correctly, packets were still not detected at the readers. One 
observation we made was that the IGMP join messages themselves were not being 
sent out of the readers, which led us to believe that there was some filtering 
happening at the Ethernet layer. [3] Suggested that routing packets through an 
“eroute” is what causes this behavior. We could not confirm this fact however. We 
supply a temporary fix at this stage by modifying the Ethernet driver code to accept 
all multicast packets seen on the Ethernet bus. The readers and writers now function 
as expected. 
 

4.2 Timing Evaluation 

 
DNSSEC processing typically takes about 2.5ms on average. In order to investigate 
the latency imposed by IPSec encapsulation, we run a simple application-level “ping” 
and examine the round-trip overhead. Expectedly, IPSec processing introduces a 
significant overhead. While the average RT-time between two nodes without a 
Security Association between them is 0.58 ms, the same, using either IPSec ESP or 
AH processing doubles to about 1.2 ms.  
 
A more interesting problem, however, is comparing the time taken for explicit keying 
between every KSV-client pair and hierarchical keying using the LKH mechanism 
whenever a member is revoked. We perform this test as follows: 
1. Configure a multicast group containing different testnodes  
2. Register every node with the KSV so as to maximize the number of keys we may 

have to send during a re-key 
3. Remove every nodes from the multicast group incrementally, so as to trigger any 

keying updates on our multicast channel 
4. Perform the same operation this time using individual KSV-client re-keys for 

every node currently registered at the KSV 
5. Repeat steps 1 through 4 for different orders of the LKH tree  
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Table 2 and Figure 10 summarize our comparison results for explicit keying (EK) and 
hierarchical keying using the LKH approach. 
 
 
 
 
Revoke this testnode =>  10 9 7 6 5 4 3 2 1 

EK 4.4 3.8 3.3 2.8 2.3 1.7 1.2 .6 - Order = 1 LKH 236.2 235.3 158.1 157.0 89.6 166.1 78.5 78.6 - 
EK 4.4 3.8 3.2 2.7 2.2 1.7 1.1 .6 - Order = 2 LKH 336.5 235.6 157.0 235.3 156.9 78.5 156.8 85.3 - 
EK 4.4 3.9 3.2 2.7 2.2 1.7 1.1 .6 - Order = 3 LKH 414.5 314.0 235.2 163.1 90.0 244.9 164.0 78.5 - 

Table 2Time in ms taken for Explicit (EK) and LKH keying for different Orders 
of the LKH tree 

 

 

Figure 10 Comparison between Explicit Keying and LKH for multicast member 
revocation 
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To investigate the behavior of the LKH approach, we need to see how the LKH trees 
are created in the first place. Figure 11 depicts this information. 
 
We observe that the timing behavior for the LKH trees directly depend on the number 
of public-key operations required to be performed during the revocation process. 
Thus for the LKH tree with order=1, the number of public-key operations required 
when testnode10 is revoked is 3 – one for every sibling node - (5,6) and (7,9), and 
one for the adjacent branch. Revocation of testnode9 also has the same number of 
public-key operations – one for testnode7, one for its sibling node – (5,6) and finally 
one for the adjacent branch.  
 

 

Figure 11 LKH trees for Tree Orders of 1, 2, and 3 
 
This result is interesting because it tells us that simply increasing the order of the 
LKH tree does not necessarily improve the key-update time. On an average, the 
update time increases because there are more number of key transmissions required 
for larger orders. Even though a broader LKH tree requires a lesser number of keying 
updates across branches for propagating key revocations, the delay overhead caused 
by sending an update for every sibling in the current node is significant.   
 
Finally, we observe that the LKH mechanism is more than an order of magnitude 
slower than its explicit key-exchange counterpart due to the expensive public key 
operations required in its implementation.  
 
In summary, it is clear that for small number of nodes the advantage of the LKH 
algorithm is amortized by the overhead of the public key operations required in its 
implementation. Explicit keying for every peer also does not scale well and becomes 
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comparable to the LKH mechanism as the number of nodes increase.  An interesting 
future enhancement could be combining Explicit Keying with the LKH approach in 
order to reduce the overall latency during group member revocation. 
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5 Conclusions 

 
This paper describes our effort at building a prototype framework for dynamically 
setting up node-node Security Associations. In this prototype we have successfully 
built in and/or integrated support for the following: 
�� Source-Authentication using DNSSEC 
�� Peer-Authentication, Integrity and Confidentiality services using the IPSec 

infrastructure 
�� A Keying mechanism using IKE and the Logical Key Hierarchy for group 

member revocation.  
 
We suggest some possible areas for future work: 
 
1. Configuration of secure topologies currently lacks a GUI. Also, the parameters 

used in the security association can be extended to include specific algorithms and 
IPSec modes. 

2. The multicast member revocation currently uses the LKH mechanism. The 
Enhanced LKH+ mechanism suggests some optimizations to this basic protocol. 
Other approaches for optimizing key updates should also be evaluated 

3. We assume the Keying Server to have a single public-private key-pair. While this 
assumption itself does not compromise security, servers capable of connecting to 
clients on different interfaces may want to use different public keys for each 
interface 

4. Our implementation does not handle inter-domain KSV management. While 
clients can register with multiple servers, there currently exists no mechanism for 
key management and SA arbitration between nodes belonging to two different 
domains.  
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